| Ques
Num | | Scheme | Marks | |-------------|-----|---|---| | Q1 | (a) | A population is collection of all items | B1 (1) | | | (b) | (A random variable) that is a function of the sample which contains no unknown quantities/parameters. | B1 (1) | | | (c) | The voters in the town | B1 | | | | Percentage/proportion voting for Dr Smith | B1 | | | (d) | Probability Distribution of those voting for Dr Smith from all possible samples (of size 100) | (2)
B1 | | | | (615,220,100) | (1) | | | | | [5] | | | | Notes | | | | (a) | B1 – collection/group all items – need to have /imply all eg entire/complete/every | | | | (b) | B1 – needs function/calculation(o.e.) of the sample/random variables/observations and no unknown quantities/parameters(o.e.) NB do not allow unknown variables e.g. "A calculation based solely on observations from a given sample." B1 "A calculation based only on known data from a sample" B1 "A calculation based on known observations from a sample" B0 | Solely/only imply no unknown quantities | | | (c) | B1 – Voters | quantities | | | | Do not allow 100 voters. | | | | | B1 – percentage/ proportion voting (for Dr Smith) the number of people voting (for Dr Smith) Allow 35% of people voting (for Dr Smith) Allow 35 people voting (for Dr Smith) Do not allow 35% or 35 alone | | | | (d) | B1 – answers must include all three of these features (i) All possible samples, (ii) their associated probabilities, (iii) context of voting for Dr Smith. | | | | | e.g "It is all possible values of the percentage and their associated probabilities." B0 no context | | | Ques
Num | | | Sche | eme | | Ma | arks | |-------------|-----|--|-----------------------------|---|---------------------------|------|-------------| | Q2 | (a) | Let X be the random $X \sim B(9, 0.2)$ | variable the number o | of games Bhim loses. | | B1 | | | | | $P(X \le 3) - P(X \le 2)$ | = 0.9144 - 0.7382 | or $(0.2)^3 (0.8)^6 \frac{9}{3!}$ | <u>0!</u>
6! | M1 | | | | | | = 0.1762 | = 0.1762 | awrt 0.176 | A1 | (3) | | | (b) | $P(X \le 4) = 0.9804$ | | | awrt 0.98 | M1A1 | (2) | | | (c) | Mean = 3 variance | $=2.85, \frac{57}{20}$ | | | B1 B | 31 (2) | | | (d) | Po(3) | 20 | | poisson | M1 | | | | | $P(X > 4) = 1 - P(X \le 1)$ | (4) | | | M1 | | | | | = 1 - 0.8153 | | | | | | | | | = 0.1847 | | | | A1 | (3)
[10] | | | | Notes | | | | | | | | (a) | B1 – writing or use of I | B(9, 0.2) | | | | | | | | M1 for writing/ using | $g P(X \le 3) - P(X \le 2)$ | or $(p)^3 (1-p)^6 \frac{9!}{3!6}$ | -
! | | | | | | A1 awrt 0.176 | | | | | | | | (b) | M1 for writing or usi
A1 awrt 0.98 | $ng P(X \le 4)$ | | | | | | | (c) | B1 3
B1 2.85, or exact equ | ivalent | | | | | | | (d) | M1 for using Poisson
M1 for writing or usi
0.8912 Po(2.5)
A1 awrt 0.185 | | $P(X \le 4)$ is 0.7254 I | Po(3.5) and | | | | | | Special case: Use of | | | | | | | | | (a) can get B1 M1 A0 | 0 – B1 if written B(9, | 0.2), M1 for $\frac{e^{-1.8}1.8^3}{3!}$ | - or awrt to 0.161 | | | | | | If B(9, 0.2) is not see
(b) can get M1 A0 - N
0.964 | M1 for writing or using | • | | | | | | | Use of Normal in (d)
Can get M0 M1 A0 | • | ite $1 - P(X \le 4)$ or g | et awrt 0.187 | | | | Question
Number | Scheme | | | Marks | | |--------------------|---|---|---|----------------------|--| | Q3 | Method 1 | Method 2 | Method 3 | | | | | $P(X > 6) = \frac{1}{6}$ | $P(4 < X < 6) = \frac{1}{3}$ | $P(X > 6) = \frac{1}{6}$ | B1
M1 | | | | $P(X<4)=\frac{1}{2}$ | | $Y \sim U[3,9] P(Y > 6) = \frac{1}{2}$ | A1 | | | | $total = \frac{1}{6} + \frac{1}{2} = \frac{2}{3}$ | $1 - \frac{1}{3} = \frac{2}{3}$ | total = $\frac{1}{6} + \frac{1}{2} = \frac{2}{3}$ | M1dep B
A1
(5) | | | | Notes | | | [5] | | | | Allow $\le and \ge \text{signs}$ A1 $\frac{1}{6}$; $or \frac{1}{2}$; $\frac{1}{3}$ must match the M1 for adding their " P(X dep on getting first B mark A1 cao $\frac{2}{3}$ Method 3 Y~U[3, 9] B1 for 6 with U[1,7] and 6 M1 for P(X > 6) or P(6 < A1 $\frac{1}{6}$; $or \frac{1}{2}$; must match the | X < 7); or $P(X < 4)$ or $P(1 < 4)$ or $P(1 < 4)$ or $P(1 < 4)$ or $P(X | r 1 - their "P(4 < X < 6)" | | | | Questio
Number | | Mark | s | |-------------------|--|---------|-----| | Q4 (a | $\frac{4}{9}(m^2+2m-3)=0.5$ | M1 | | | | $m^{2} + 2m - 4.125 = 0$ $m = \frac{-2 \pm \sqrt{4 + 16.5}}{2}$ $m = 1.26, -3.264$ | M1 | | | | (median =) 1.26 | A1 (| (3) | | (b | Differentiating $\frac{d\left(\frac{4}{9}(x^2+2x-3)\right)}{dx} = \frac{4}{9}(2x+2)$ | M1 A1 | | | | $f(x) = \begin{cases} \frac{8}{9}(x+1) & 1 \le x \le 1.5\\ 0 & \text{otherwise} \end{cases}$ | B1ft (| (3) | | (c | =1-0.3733 | M1 | | | | $=\frac{47}{75}$, 0.6267 awrt 0.627 | A1 (| (2) | | (d | $(0.6267)^4 = 0.154$ awrt 0.154 or 0.155 | M1 A1 (| (2) | | | | [1 | 10] | | | <u>Notes</u> | | | | (a | M1 putting F(x) = 0.5 M1 using correct quadratic formula. If use calc need to get 1.26 (384) A1 cao 1.26 must reject the other root. If they use Trial and improvement they have to get the correct answer to gain the second M mark. | | | | (b | | | | | (c | M1 finding/writing 1 – F(1.2) may use/write $\int_{1.2}^{1.5} \frac{8}{9}(x+1) dx$ or 1 – $\int_{1}^{1.2} \frac{8}{9}(x+1) dx$ | | | | | or $\int_{1.2}^{1.5}$ "their f(x)" dx. Condone missing dx | | | | | A1 awrt 0.627 | | | | (d | M1 (c) ⁴ If expressions are not given you need to check the calculation is correct to 2sf. | | | | | A1 awrt 0.154 or 0.155 | | | | | stion
nber | Scheme | Marks | | | | | |----|---------------|---|----------------|--|--|--|--| | Q5 | (a) | Connecting occurs at random/independently, singly or at a constant rate | B1 (1) | | | | | | | (b) | Po (8) | B1 | | | | | | | (i) | P(X=0) = 0.0003 | M1A1 | | | | | | | (ii) | $P(X \ge 4) = 1 - P(X \le 3)$ | M1 | | | | | | | | $=1-0.04\overline{24}$ | A1 (5) | | | | | | | | = 0.9576 | | | | | | | | (c) | $H_0: \lambda = 4 \ (48) \ H_1: \lambda > 4 \ (48)$ | B1 | | | | | | | | N(48,48) | M1 A1 | | | | | | | | Method 1 Method 2 | | | | | | | | | $P(X \ge 59.5) = P\left(Z \ge \frac{59.5 - 48}{\sqrt{48}}\right) \qquad \frac{x - 0.5 - 48}{\sqrt{48}} = 1.6449$ | M1 M1 A1 | | | | | | | | $= P (Z \ge 1.66) = 1 - 0.9515$ | | | | | | | | | = 0.0485 $x = 59.9$ | A1 | | | | | | | | 0.0485 < 0.05 | | | | | | | | | Reject H ₀ . Significant. 60 lies in the Critical region | M1 | | | | | | | | The number of failed connections at the first attempt has increased. | A1 ft (9) [15] | | | | | | | (a) | Notes B1 Any one of randomly/independently/singly/constant rate. Must have context of | | | | | | | | (α) | connection/logging on/fail | | | | | | | | (b) | B1 Writing or using Po(8) in (i) or (ii) | | | | | | | | (i) | M1 for writing or finding $P(X=0)$ | | | | | | | | , , | A1 awrt 0.0003 | | | | | | | | (ii) | M1 for writing or finding $1 - P(X \le 3)$ | | | | | | | | | A1 awrt 0.958 | | | | | | | | (c) | B1 both hypotheses correct. Must use λ or μ | | | | | | | | | M1 identifying normal | | | | | | | | | A1 using or seeing mean and variance of 48 | | | | | | | | | These first two marks may be given if the following are seen in the standardisation | | | | | | | | | formula : 48 and $\sqrt{48}$ or awrt 6.93 | | | | | | | | | M1 for attempting a continuity correction (Method 1: 60 ± 0.5 / Method 2: $x \pm 0.5$) | | | | | | | | | M1 for standardising using their mean and their standard deviation and using either | | | | | | | | | Method 1 [59.5, 60 or 60.5. accept $\pm z$.] Method 2 [$(x\pm 0.5)$ and equal to a $\pm z$ value) | | | | | | | | | A1 correct z value awrt ± 1.66 or $\pm \frac{59.5 - 48}{\sqrt{48}}$, or $\frac{x - 0.5 - 48}{\sqrt{48}} = 1.6449$ | | | | | | | | | A1 awrt 3 sig fig in range 0.0484 – 0.0485, awrt 59.9 | | | | | | | | | M1 for "reject H ₀ " or "significant" maybe implied by "correct contextual comment" | | | | | | | | | If one tail hypotheses given follow through "their prob" and 0.05 , $p < 0.5$ | | | | | | | | | If two tail hypotheses given follow through "their prob" with 0.025 , $p < 0.5$ | | | | | | | | | If one tail hypotheses given follow through "their prob" and 0.95 , $p > 0.5$ | | | | | | | | | If two tail hypotheses given follow through "their prob" with 0.975 , $p > 0.5$ | | | | | | | | | If no H ₁ given they get M0 | | | | | | | | | A1 ft correct contextual statement followed through from their prob and H ₁ need | | | | | | | | | the words <u>number of failed connections/log ons</u> has <u>increased</u> o.e. Allow "there are more failed connections" | | | | | | | | | NB A correct contextual statement <u>alone</u> followed through from their prob and H ₁ | | | | | | | | | gets M1 A1 | | | | | | | Question
Number | | Scheme | | Marks | | |--------------------|-----|---|-------------|---------------------|--| | Q6 | (a) | 2 outcomes/faulty or not faulty/success or fail A constant probability | B1
B1 | | | | | | Independence Fixed number of trials (fixed <i>n</i>) | | (2) | | | | (b) | $X \sim B(50,0.25)$ | M1 | | | | | | $P(X \le 6) = 0.0194$ | | | | | | | $P(X \le 7) = 0.0453$
P(X > 18) = 0.0551 | | | | | | | $P(X \ge 19) = 0.0287$ | | | | | | | $\operatorname{CR} X \leq 6$ and $X \geq 19$ | A1 A1 | (3) | | | | (c) | 0.0194 + 0.0287 = 0.0481 | M1A1 | (2) | | | | (d) | 8(It) is not in the Critical region or 8(It) is not significant or 0.0916 > 0.025; There is evidence that the probability of a faulty bolt is 0.25 or the company's claim is correct. | M1;
A1ft | (2) | | | | (e) | $H_0: p = 0.25 H_1: p < 0.25$ | B1B1 | | | | | | $P(X \le 5) = 0.0070$ or $CRX \le 5$ | M1A1 | | | | | | 0.007 < 0.01, | | | | | | | 5 is in the critical region, reject H_0 , significant. | M1 | (1) | | | | | There is evidence that the probability of faulty bolts has decreased | A1ft | (6)
[15] | | | | (a) | Notes B1 B1 one mark for each of any of the four statements. Give first B1 if only one corre | ect state | nent | | | | 4. | given. No context needed. | | | | | | (b) | M1 for writing or using B(50,0.25) also may be implied by both CR being correct. Co | ndone ι | ise | | | | | of P in critical region for the method mark.
A1 $(X) \le 6$ o.e. $[0,6]$ DO NOT accept $P(X \le 6)$ | | | | | | | A1 $(X) \ge 19$ o.e. [19,50] DO NOT accept $P(X \ge 19)$ | | | | | | (c) | M1 Adding two probabilities for two tails. Both probabilities must be less than 0.5 | | | | | | (4) | A1 awrt 0.0481 | | | | | | (d) | M1 one of the given statements followed through from their CR. A1 contextual comment followed through from their CR. | | | | | | | NB A correct contextual comment <u>alone</u> followed through from their CR will get M1 | A1 | | | | | (e) | B1 for H ₀ must use p or π (pi) | | | | | | | B1 for H_1 must use p or π (pi) | | | | | | | M1 for finding or writing P($X \le 5$) or attempting to find a critical region or a correct | critical | | | | | | region A1 overt 0.007/CP, V < 5 | | | | | | | A1 awrt $0.007/CR X \le 5$
M1 correct statement using their Probability and 0.01 if one tail test | | | | | | | or a correct statement using their Probability and 0.005 if two tail test. | | | | | | | The 0.01 or 0.005 needn't be explicitly seen but implied by correct statement compati | ble with | 1 | | | | | their H ₁ . If no H ₁ given M0 | | | | | | | A1 correct contextual statement follow through from their prob and H ₁ . Need faulty b | alta and | | | | | | decreased. | ons and | | | | Question
Number | | Scheme | Marks | |--------------------|------|---|------------| | Q7 | (ai) | $f(y) \ge 0 \text{ or } f(3) \ge 0$ | M1 | | | | $ky(a-y) \ge 0$ or $3k(a-3) \ge 0$ or $(a-y) \ge 0$ or $(a-3) \ge 0$ | | | | | $a \ge 3$ | A1 cso | | | | | | | | (ii) | 3 | | | | | $\int_{0}^{\infty} k(ay - y^{2}) dy = 1$ integration | M1 | | | | $\int_{0}^{3} k(ay - y^{2}) dy = 1$ integration $\left[k \left(\frac{ay^{2}}{2} - \frac{y^{3}}{3} \right) \right]_{0}^{3} = 1$ answer correct | | | | | $\left k \left \frac{dy}{2} - \frac{y}{3} \right \right = 1$ answer correct | A1 | | | | | | | | | $k\left(\frac{9a}{2} - 9\right) = 1$ answer = 1 | M1 | | | | (-) | | | | | $k\left[\frac{9a-18}{2}\right] = 1$ | | | | | $k = \frac{2}{9(a-2)} *$ | A1 cso (6) | | | | 9(a-2) | A1 C50 (0) | | | (b) | f ³ 2 2 | | | | (5) | $\int_0^3 k(ay^2 - y^3) dy = 1.75$ Int $\int xf(x)$ | M1 | | | | $\left[\left(ay^3 y^4 \right) \right]^3$ Correct integration | A1 | | | | $\left[k\left(\frac{ay^3}{3} - \frac{y^4}{4}\right)\right]_0^3 = 1.75$ Correct integration $\int xf(x) = 1.75 \text{ and limits } 0.3$ | M1dep | | | | $k\left(9a - \frac{81}{4}\right) = 1.75$ | | | | | $\left(\frac{3u-4}{4}\right)^{-1.75}$ | | | | | $2\left(9a - \frac{81}{4}\right) = 15.75(a - 2)$ subst k | M1dep | | | | | | | | | $2.25a = -31.5 + \frac{81}{2}$ | | | | | a = 4 * | A1cso | | | | $k = \frac{1}{-}$ | B1 (6) | | | | 9 | | | | | | | | Question
Number | Scheme | Ma | arks | | |--------------------|--|----------|-------------|--| | (c) | | B1
B1 | (2) | | | (d) | mode = 2 | B1 | (2) | | | (a) (i) | Notes M1 for putting $f(y) \ge 0$ or $f(3) \ge 0$ or $ky(a-y) \ge 0$ or $3k(a-3) \ge 0$ or $(a-y) \ge 0$ or state in words the probability can not be negative o.e. | (a-3) | [15]
)≥0 | | | (ii) | A1 need one of $ky(a-y) \ge 0$ or $3k(a-3) \ge 0$ or $(a-y) \ge 0$ or $(a-3) \ge 0$ and $a \ge 3$ M1 attempting to integrate (at least one $y^n \to y^{n+1}$) (ignore limits) A1 Correct integration. Limits not needed. And equals 1 not needed. M1 dependent on the previous M being awarded. Putting equal to 1 and have the correct limits. | | | | | (b) | Limits do not need to be substituted. A1 cso M1 for attempting to find $\int yf(y) dy$ (at least one $y^n \to y^{n+1}$) (ignore limits) A1 correct Integration | | | | | (c) | M1 $\int yf(y) = 1.75$ and limits 0,3 dependent on previous M being awarded M1 subst in for k. dependent on previous M being awarded A1 cso 4 B1 cao 1/9 B1 correct shape. No straight lines. No need for patios. B1 completely correct graph. Needs to go through origin and the curve ends at 3. Special case: If draw full parabola from 0 to 4 get B1 B0 Allow full marks if the portion $x = 3$ and $x = 4$ is dotted and the rest of the curve solid. | ion bet | tween | | | | | | | | | (d) | B1 cao 2 | | | |